TRANSFERABILITY OF APPLE AND PEAR SSRS TO OTHER TEMPERATE POME FRUIT CROPS OF FAMILY ROSACEAE

Himani SHARMA, Parul SHARMA and Rajnish SHARMA*

Department of Biotechnology, Dr YS Parmar University of Horticulture & Forestry, Nauni, Solan, India

Sharma H., P. Sharma, R. Sharma (2021). Transferability of apple and pear SSRS to other temperate pome fruit crops of family Rosaceae. - Genetika, Vol 53, No.1, 195-208. Extensive use of simple sequence repeat (SSR) is facilitated if loci would be transferable across species even in closely related genera to overcome high cost and efforts involved in their development as major constraints. In the present study, apple and pear genomic microsatellite primer pairs were used to amplify SSR loci in apple, pear, quince and loquat genotypes, respectively. Already reported SSRs were selected based on their polymorphic survey for successful amplification with at least one polymerase chain reaction (PCR) product of the approximate size expected for a homologous locus screened among apple and pear genotypes for further transferability exploration across other temperate pome fruit crops, respectively. Highest transferability of apple and pear SSR, 61.53 % and 73.33 % was observed in closely related quince and apple genotypes, respectively. This indicated that primer binding sites between these two closely related genera, Malus and Pyrus, are fairly well conserved. Maximum transferability rate was found to be 93.33 % and 80.00 % across all the subjected genotypes for primer CH05D11 and TSUenh016 in apple and pear, respectively. The transferability of markers is based on genomic similarity, and can reflect the relationship of genome collinearity and even evolution between species. This high level of transferability of apple and pear SSRs to other temperate pome fruit crops indicated their promise for application to future molecular screening, map construction, and comparative genomic studies, etc.

Keywords: apple, pear, SSR, temperate pome fruit crops, transferability,

markers.

INTRODUCTION

Among the available molecular markers, microsatellites or SSRs are used as an ideal tool in a variety of applications due to many desirable features including hypervariability, multiallelic nature, codominant inheritance, reproducibility, relative abundance and extensive

Corresponding author: Rajnish Sharma, Department of Biotechnology, Dr YS Parmar University of Horticulture & Forestry, Nauni, Solan (HP) 173 230 India, Phone: 01792252310, Fax: 01792252844, E-mail: rajnish.sharma@yahoo.co.in

genome coverage (VARSHNEY et al., 2005). However, the cost and effort required for their development is one of the major constraints of using SSRs as a molecular marker (POWELL et al., 1996). Thus, a more extensive use of SSRs in plants would be facilitated if such loci were transferable across species even in closely related genera. Many studies on comparative genetics have revealed that the gene content and order are highly conserved among closely related plant species. Sequence data obtained from many plants indicate the sufficient homology existing in the regions flanking the SSR loci of two or more closely related genera/species (KULEUNG et al., 2004; GUTIERREZ et al., 2005; KALIA et al., 2011). Hence, primer pairs designed on the basis of the sequences obtained from one species could be used to detect microsatellites in related species even in multiple genera of same family. The cross transferability of SSRs is mainly useful in comparative genome mapping and phylogenetics. Furthermore, this method of microsatellite detection is especially useful in those crops where neither sequence information nor the genetic maps are available. Several studies have also demonstrated the cross transferability of SSR markers from one species to other species of the same genus and even to species of other genera (GASIC et al., 2009; MNEJJA et al., 2010; YU et al., 2011). Thus, transferability of genomic SSR may be advantageous in fingerprinting or varietal identification of those plants for which DNA data base is not available. Rosaceae is a large plant family containing more than 3,000 species, many of which are economically important fruit trees of temperate region such as apple, pear, quince and loquat. However, there is rather little genomic information available for other valuable fruit tree members of the big Rosaceae family. Apple (Malus x domestica Borkh.) is one of the most widespread and popular fruit trees in the temperate regions of the world (JANICK et al., 1996). About 59 species and 7500 cultivars were identified in all over the world. Pear (Pyrus spp.), one of the oldest fruit crops in the world, belongs to the genus Pyrus, subfamily Maloideae (Pomoideae). Economically, pear is the third most important temperate fruit species after apple, and the genome sequencing of the diploid P. bretschneideri Rehd. cv. 'Dangshansuli' has allowed ready access to the DNA sequences of pear (WU et al., 2013). Some apple SSRs have already been used to identify genetic diversity in pear (YAMAMOTO et al., 2001, 2002). There are several reports on the transferability of SSR markers in or across genera among Rosaceae fruit crops (GASIC et al., 2009; GISBERT et al., 2009; YAO et al., 2010; HE et al., 2011). Evaluation of genetic relatedness among temperate pome fruit crops of family Rosaceae using arbitrary oligonucleotide markers has been done in our previous findings (SHARMA et al., 2011). In the present study, we reported cross-transferability of microsatellite markers developed in apple to pear, quince and loquat and pear to apple, quince and loquat, respectively.

MATERIALS AND METHODS

Plant materials and DNA isolation.

Young green leaves of each genotype of apple, pear, quince and loquat fruit were procured from the National Bureau of Plant Genetic Resources (NBPGR) Regional station, Phagli (HP) and other locations of Himachal Pradesh (India) for carrying out molecular marker studies (Table 1). Isolation of genomic DNA was done from the collected leaves of each subjected genotype by using CTAB method (DOYLE and DOYLE, 2011). RNA contaminants in all the samples were digested with 100µg/ml RNaseA for 30 minutes at 37°C. DNA concentration and purity were measured using UV/VIS spectrophotometer at 260 nm and 280 nm absorbance.

S.No.	Name of Genotype	Origin	S.No.	Name of Genotype	Origin
Apple			Pear		
1	Royal Delicious	USA	21	Kashmir Pear	India
2	Tydeman	UK	22	Chuger yongshiki	Japan
3	Well Spur	USA	23	Le conte	Japan
4	Silver Spur	USA	24	Tan-Yan Jhao	China
5	Red Baron	USA	25	Moodeung	Korea
6	Red Baldwin	USA	26	Keiffer	Japan
7	Gravenstein	Denmark	27	Nic-58127	India
8	Ingrid Marie	Denmark	28	Korean giant Pear	Korea
9	Gale Gala	New Zealand	29	Babugosha	India
10	Top Red	USA	30	IC-20092	India
11	Hardeman	USA	31	Hood	USA
12	Ambrich	India	32	King Pear	UK
13	Ambroyal	India	33	Doynee Bussarch	UK
14	Ambstarking	India	34	Baldwin Pear	USA
15	Margrate	UK	35	Stirling	USA
16	Wugenar	USA	36	Rakovslik	Hungry
17	Directeur Van De Plassche	Netherland	37	Wenatchee	USA
18	Survovets	USA	38	Nuggetz	Italy
19	Dessert of Isaac	UK	39	Harogen	USA
20	Summer Queen	USA	40	EC-566191	USA
Quince			Loquat		
41	Cydonia Quince		46	Nauni Gandal	India (HP)
42	Orange Quince	-	47	Nauni Kiwi	India (HP)
43	EC-024520	USA	48	Nauni DR	India (HP)
44	EC-024530	USSR	49	Palampur	India (HP)
45	Quince J/K	India (J&K)	50	Nauni Adm	India (HP)

Table 1. Apple, pear, quince and loquat genotypes subjected to molecular characterization studies using SSR markers.

* USA: United States of America, UK: United Kingdom, USSR: Union of Soviet Socialist Republics,

J&K: Jammu and Kashmir, EC: Exotic Collection, IC: Indigenous Collection, HP: Himachal Pradesh

Microsatellite markers and PCR analysis

A total of 10 apple and 11 pear microsatellite primer pairs were selected depending upon their polymorphic information contents for their successful amplification with at least one PCR product of the approximate size expected for a homologous locus screened from earlier reports and were designed to amplify SSR loci in 20 genotypes of apple and pear, respectively (Table 2&3). DNA amplification reactions were performed in 15 μ l volume containing 50-100 ng of template DNA, PCR buffer, 0.2 mM dNTP mix (GeNei, India), 2.5 mM MgCl₂and 1U Taq DNA polymerase (GeNei, India). Both forward and reverse microsatellite primers were added to a final concentration of 15 μ l. Primers were synthesized as per the information available on the previously reported SSR markers (GIANFRANCESCHI *et al.*, 1998; LIEBHARD *et al.*, 2002; YAMAMOTO *et al.*, 2002; NISHITANI *et al.*, 2009). The samples were amplified in a thermal cycler (Applied Biosystems, USA) using following program: Initial denaturation at 95°C for 4 min, followed by 30 cycles of denaturation at 94°C for 1 min, annealing at Ta°C (Table 2) for 1 min and extension at 72°C for 2 min with a final extension at 72°C for 8 min. PCR products were visualized on 3.5% (w/v) agarose gel stained with ethidium bromide (0.5 μ g/ml), then DNA profile were visualized on a UV transilluminator and photographed by using Gel Documentation System (Syngene, UK). The allele sizes were calculated by comparing with 50 and 100 bp DNA ladder (GeNei, India). At least two independent PCR amplifications were performed for each primer.

Data analysis

The data on specific band position on electrophoresed gel was recorded by assigning '+' sign for the presence and '-' sign for the absence of band in all the subjected genotypes of temperate pome fruit crops. The percent transferability of each loci was observed to assess the transferability of apple and pear SSR markers in other related species and genera of temperate pome fruit crops, respectively.

RESULTS AND DISCUSSION

Amplification of genomic SSRs in apple

The good polymorphism characteristics of the transferable apple genomic SSRs in this study were more valuable in application to temperate pome fruit crops genomic studies. Total 10 apple genomic SSRs were amplified among 20 apple genotypes with expected size revealed in earlier reports (GIANFRANCESCHI et al., 1998; LIEBHARD et al., 2002). Consequently, these 10 apple SSRs (Tables 2 and 3) were picked for further transferability exploration across other temperate pome fruit crops belonging to three genera including pear (20 genotypes), quince (5 genotypes) and loquat (5 genotypes). Overall, 69.23% (9/13) of the tested SSRs successfully amplified at least one PCR product of the approximate size expected for a homologous gene in at least one of the genera screened. Maximum transferability rate was found to be 93.33% across all the subjected genotypes for primer CH05D11 (Fig. 1) whereas, minimum was recorded for CH04G10 (0%) (Fig. 2, Tables 2&3). Highest transferability 61.53% was observed in the closely related quince genotypes, in which the majority of apple SSRs were polymorphic. This indicated that primer binding sites between these two closely related genera were fairly well conserved. The transferability rates to pear and loquat were 46.15% and 30.76%, respectively. Similarly, the highest transferability 58.20% was reported in the closely related apple (Malus domestica) in which the majority of pears SSRs were polymorphic (FAN et al., 2013). This high level of transferability of SSRs was consistent with genome comparison of pear and apple in reported amplification of apple SSRs in pear populations (YAMAMOTO et al., 2001; PIERATONI et al., 2004; GASIC et al., 2009; WU et al., 2013).

	Primer	Sequence	Linkage	Annealing	Expected	Observed		Fruit crops		Total	Transferability (%)
- 1		(٤ - ৫)	group	Temp. (Ta °C)	Size (bp)	Size (bp)	Pear	Quince	Loquat		
	CH01E12(F) CH01E12(R)	AAACTGAAGCCATGAGGGC TCAATTCACATGAGGCTG	8	55	243-248	250	0/20	4/5	0/5	4/30	13.33
	CH02C06(F)	TGACGAAATCCACTACTAATGCA	2	55	216-254	245	0/20	5/5	0/5	5/30	16.66
	CH03D01(F) CH03D01(R)	GCACCACAAATCCAACT GGCACCACAAATCCAACT AGAGTCAGAAGCACAGCCTC	2	58	95-115	100	13/20	4/5	2/5	19/30	11 19
	CH03G07(F) CH03G07(R)	AATAAGCATTCAAAGCAATCCG TTTTTCCAAATCGAGTTTCGTT	3	55	119-181	170	1/20	4/5	3/5	8/30	26.66
	CH04G10(F) CH04G10(R)	CAAAGATGTGGGGGGGGGGAGGAGGA GGAGGCAAAAAGAGGGGAACCT	15	55	127-168	150	0/20	0/5	0/5	0/30	0
	CH05C02(F) CH05C02(R)	TIAAACTGTCACCAAATCCACA GCGAAGCTTTAGAGAGACATC	п	09	168-200	165	9/20	3/5	0/5	12/30	40.00
	CH05D11(F) CH05D11(R)	CACAACCTGATATCCGGGGAC GAGAAGGTCGTACATTCCTCAA	12	55	171-211	200	18/20	5/5	5/5	28/30	93.33
	CH05E03(F) CH05E03(R)	CGAATATTTTCACTCTGACTGGG CAAGTTGTTGTACTGCTCCGAC	2	55	158-190	160	0/20	2/5	0/5	2/30	6.66
	CH02D08(F) CH02D08(R)	TCCAAAATGGCGTACCTCTC GCAGACACTCACTCACTACTATCTCTC GCAGACACTCACTCACTACTACTATCTCTC	п	58	210-254	240	11/20	4/5	0/5	15/30	50.00
	CH01B12(F) CH01B12(R)	CGCATGCTGACATGTTGAAT CGGTGAGCCCTCTAATGTGA	12	58	123-130	125	16/20	0/5	2/5	18/30	60.00
	Number of transferable						6/13	8/13	4/13	9/13	2000
	SSRs Percentage (%)										

Table 2. Transferability of apple SSRs to other temperate pome fruit crops

Ampli	Amplification of apple SSR in apple (A1-A20)	SSR in ap	ole (A1	-A20)																	
S.No.	S.No. Primer	Al	A2	A3	A4	A5	A6	A7	AR	A9	A10	A11	C1.V	A 12	A14	A 16	111				1
-	CH01E12	+	+	+	+	+			+	+	+	+	111	CIV	114	CIN	AIO	AI/	AI8	AI9	A20
7	CH02C06	+	+	+	+	+	+	•	•				• •		+ -	ł		+ -	+	+	
m	CH03G07	+	+	+	+	+	+	+	+	-			+ -	+ -	+ ·			+	+	•	
4	CH04G10	+	+	+	+	+	+	• •		+ -		ł	+ •	+ ·	+	+	+	+	+	+	4
S	CH05D11	+	+	+	+	• •		+ +	+ -	+ •	+ •	•	+	+	+	+	+	+	+	+	
9	CHOSED3	+	• +	• +			+ -	+ •	+ -	+	+	+	+	+	+	+	+	+	+	+	
		+ .	+ -	+	+	+	+	+	+	+	•	•	•	•	,					,	
- 0	CHUSDUI	+	+	+	+	+	•	+	+	•	+	+	+	+	+	+	+		+	4	
×	CH01B12	+	+	+	+	+	+	•	+	+	+	+	+	+	+			• •	+	+ -	
6	CH05C02	+	+	+	•	+	•	+	+	+	+	+	+	• •	• •	+ +		+ -		+ -	19 1
2	CH02D08	+	+	•	+	+	+	+	•	+	+	• +	+	+ +	+ +	+ +	+ +	+ +	+ +	+ -	
nsfera	Transferability of apple SSR to pear (P1-P20)	SR to pear	(P1-P2	(0)															-	+	
S.No	S.No Primer	PI	P2	P3	P4	P5	94	Ld.	pg	DQ	DIO	D11	010	010	114						
1	CH01E12												L12	CIT	F14	CIA	PI6	P17	P18	6Id	P20
6	CH02C06			,	•	•		,	1	1	6	e s			•				•		
3	CH03G07	,	,		1	1					•	•	•						•		•
4	CH04G10					•	•	•		+			•			•	•	•			•
v	CHOSD11	4			• •	•	•	•	•	•		•	•						•	,	
2	CHOSEN2	ŀ	ŀ	ł	+	+	•	+	+	+	+	•	+	+	+	+	+	+	+	+	
1 0	COTOTO	•		•	•	•	•	•	•	•			,		,					,	1
	CHUSDUI	+	+		+	+	,	+	•		+		+		+	+	+	,	+	+	-
× •	CH01B12	+	+	+	+	+	+		+	+	+	+	,	+	+	+		-			
6	CH05C02	+	,		•	+	,	+	+	+	+	+	+	+	. ,			H	H		•
9	CH02D08	+	+	+	+	•	+	+				+	+			• +	• •				
Isfera	Transferability of apple SSR to quince(O1-O5) and loguat (I.1-1.5)	R to quinc	e(01-(D5) and	1 loans	t (1.1-1	5								i.	-	-		F		1 - I
S.No	Primer	01		07		03		04		50		1		¢.							
1	CH01E12	+				+		+		3+				77		5		L4		L5	
7	CH02C06	+		+		+		- +		+ +				•		•		•		'	
"	CH03G07	+		-						F		•		•		•		•		•	
4	CHOAGIN	ŀ		ŀ		+		+		•		+		•		•		+		+	
•				•		'		•		•		•		•				ā			
n '	CH05D11	+		+		+		+		+		+		+		+		+		-	
9	CH05E03	•		+		+		'				,								-	
1	CH03D01	+		+		+		+		,		+		н		•		•		•	
8	CH01B12					'						-		+ -		•		•		•	
6	CH05C02	+		+		+						ł		+		r		e			
10	CHUDING					-		•		i		,				9					
																1				•	

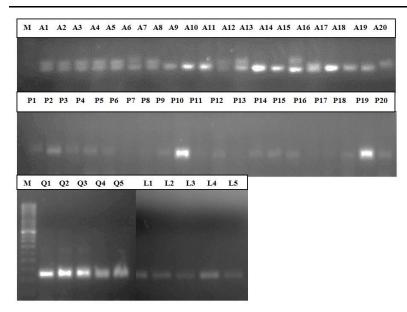


Fig 1 Gel showing DNA banding profiles using apple SSR CH05D11 Where; M: 50 bp ladder, (A1-A20) apple, (P1-P20) pear, (Q1-Q5) quince and (L1-L5) loquat genotypes

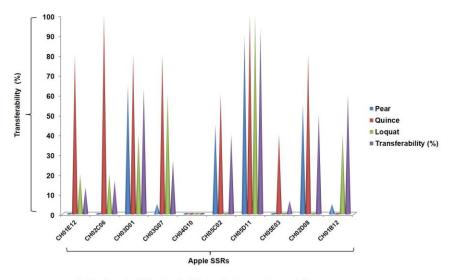


Fig 2 Transferability of apple SSRs to other temperate pome fruit crops

Amplification of genomic SSRs in pear

Total 11 pear genomic SSRs were selected among 20 pear genotypes for their successful amplification with at least one PCR product of the approximate size expected for a homologous locus screened in earlier reports (YAMAMOTO *et al.*, 2002; NISHITANI *et al.*, 2009). Maximum transferability rate was found to be 80.00% across all the subjected genotypes for primer TSUenh016 (Fig. 3) whereas, minimum was recorded for TSUenh046 (33.33%) (Tables 4 and 5). The good polymorphism characteristics of the transferable pear genomic SSRs in this study were more valuable in application to temperate pome fruit crops genomic studies. The highest transferability 73.33% was observed in the closely related apple genotypes, in which the majority of pear SSRs were polymorphic (Fig. 4, Tables 4 and 5). This indicated that primer binding sites between these two closely related genera, *Malus* and *Pyrus*, are fairly well conserved. The transferability rates to quince and loquat were 53.33% and 33.33%, respectively. The transferability of markers is based on genomic similarity and can reflect the relationship of genome collinearity and even evolution between species. Besides, high transferability (59.00 %) of apple SSRs to pear (GASIC *et al.*, 2009), and amplification of apple SSRs in pear populations have been reported (FAN *et al.*, 2013).

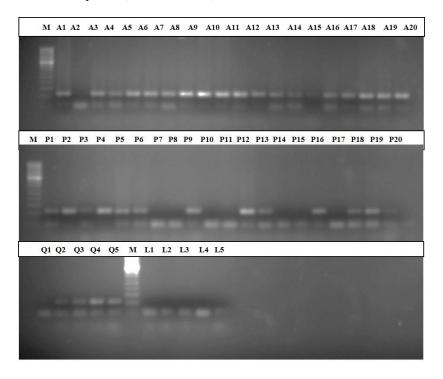


Fig 3 Gel showing DNA banding profiles using pear SSR TSUenh016 Where; M: 50 bp ladder, (A1-A20) apple, (P1-P20) pear, (Q1-Q5) quince and (L1-L5) loquat genotypes

fruit crops	
ome	4
temperate p	Sequence
other	
100	
SSRs	
bility of pear	Primer
. Transfera	S.No.
Table 4	

			0	0	named in	CUSCINCU		Fruit crops	\$	10031	I ransterability
		(2 - 3)	group	Temp.	Size (bp)	Size (bp)	Apple	Apple Quince	Loquat		(%)
_	RGT23h(F)	CACATTCA A AGATTA ACAT		(1 81)							
	DGT73h(D)		2	55	164-230	100	20/20	0/5	0/5	20/30	66.66
	(V)0CTING	ALICAUCULITITICCAC									
2	NH011b(F)	GGTTCACATAGAGAGAGAGAGAG	4			200	16/20	3/5	310	OCT LC	00 01
	NH011b(R)	TITGCCGTTGGACCGAGC		60	163-215	007	10/20	CIC	C/7	71/30	/0.00
~	TSUenh006(F)	ATCAGAGGCTACTCCAATGGTGA									
	TSUenh006(R)	TGTTAAAGACCAGAAAGCCCTTG	2	57	112-140	115	19/20	4/5	0/5	23/30	76.66
-	TSUenh025(F)	CACCTCCGTTAACCCCTCATAAT									
	TSUenh025(R)	CTTCACCCCATCGAATCAAAAC	13	57	195-260	250	17/20	4/5	2/5	23/30	76.66
	TSUenh026(F)	GCGTTGAGTGACCTCTTTCATTT									
	TSUenh026(R)	GGAAGTTGTGCTAGCAAAGAAGC	17	55	132-200	150	13/20	5/5	0/5	18/30	60.00
	TSUenh016(F)	TCATTICATGGACTCTCAATCTCC									
	TSUenh016(R)	CGAGGAGTCTGTCTGCGTCT	15	55	127-178	130	19/20	5/5	0/5	24/30	80.00
	TSUenh044(F)	GACAATTGGCTAAATACTCTTCG	1								
	TSUenh044(R)	GGCGACGAAGTTGTGTTAGATTA	Π	55	145-172	160	18/20	0/5	1/5	19/30	63.33
	TSUenh046(F)	GGTCATCACCCACTTAAAAACCA									
	TSUenh046(R)	GTGCCCTGAAGTAATTGAGATGG	9	55	142-156	150	9/20	0/5	1/5	10/30	33.33
	NH030a(F)	TCCAAAGTTCAACACAGATCAAGAG		1							
	NH030a(R)	TCCGGATTITGTTGTCGGTTTTA	3	55	160-178	170	19/20	3/5	0/5	2/30	73.33
10	NH036b(F)	TCCGGATTITGTTGTCGGTTTTA									
	NH036b(R)	ATTTCACTCTTCTCGCACCC	8	56	160-200	180	12/20	3/5	0/5	15/30	50.00
Π	TSUenh029(F)	GGAAGTTGTGCTAGCAAGAAGC	1								
	TSUenh029(R)	GCCTGTTTCCACTTATGCTCACT	10	55	175-240	200	13/20	2/5	0/5	15/30	50.00
	Number of										
	transferable						11/15	0/15	2112	21/11	
1	SSRs						CT /11	CT 10	C1/C	C1/11	
	Percentage						73 33	53 33	33 33	72 22	
	(%)						00.01	<i>cc.cc</i>	<i>cc.cc</i>	cc.c/	

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	S.No Primer P1 P2	Primer	Ρl	P2	P3	P4	P5	P6	P7	PR	bd	P10 P11		P12 P13	D14	DIG	DIG	D17	010	DIG	000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I TS	SUenh006	+	+	+	+	+	+									110		110	F13	120
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 TS	SUenh025	+	+	+		,	+		+	+	+		+	+	+	0.3	• •	+ +	+ -	H
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 TS	SUenh026	+	•		+	+	+	+	+	+	+				- +	+		+ +	F	• •
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 B(GT23b	+	+	+	+	+	+	,	+		+			+			+ +	+ +		ł
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 N	H011b	+	+	+	+	+	+	+	+	,	+	1		- 1		• •	+ +	+ -		• •
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 TS	SUenh016		+	+	+		+	+	• +	4			-		+ -	+ -	+ •	+ -	+ -	+
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T TS	SI Jenh044	+	+	+	• •	н	-			+ -	r 		•	+	+	+	+	+	+	+
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ST 8	T Ienh046					+ -	+ -	+ -	+ -	+ •	• •		+		+	+	•	+	+	+
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					+ -	+ -	+ -	+	+	+	+	+		+	+	+	+	+	+		+
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		BUCUH 10201	+	+	+	+	+	+		+	+	+	T	+	+	+	+	+	+	+	+
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		HU36b XI Jenh020	+,+	+ +	+ +	+ +	+ +		+		+ -	+ •	T	+	•	+	+	+	+	+	'
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		10001107D	-	H	+	+	+	+		+	+	+			+	•	+	+	+	+	•
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	nsferability	of pear SSR t	o apple (A1-A20	((
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	S.No Prim	ler	AI	A2		A4	A5	A6	A7								A16	A17	A18	A 10	CV
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 TS	SUenh006	+		+	+	+	+	+	+	+					1	+	+	+	-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 TS	Uenh025		+	+	+	+	+	+	+	+	• •	+	+	+	+	- +	+ +	+ 1	+ +	+ +
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 TS	SUenh026	+			+	+	+	+	+	+	•				+	- +	- +	• •	+	+ +
	4 BC	3T23b	+	+	+	+	+	+	+	+	+	++	+	+	+	+	+	+	• +	+	- +
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 NF	H011b		+	+	+	,	+	+	+	+	++	+	•	+	+		• +	• +	- +	- +
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 TS	Uenh016	+		+	+	+	+	+	+	+	++	+	+	+	+	+	+	+	+	+
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7 TS	Uenh044	+	+	+	+		+	+	+	+	++	'	+	+	+	+	+	+	+	+
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8 TS	Uenh046	+	,	+	•	+	+	+	,			+	•	•	•	+	+	• +		• •
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NH 6	1030a	+	+	+	+	+	+	+	+	+	•	+	+	+	+	+	• +	• +	+	+
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 NH	1036b	+	+	•	+	+	+	,	,	+	+	+	+	+	+	+			. ,	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	II TS	Uenh029	+	+	+	+	+		+	+		++		+	•	•	+	+			+
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Transfe	erability c	of pear	SSR to	quince	01-05	and lo	nuat (1.1	(51-											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.No	Primer		61		0		03		04		05			1 2		13			-	
2 TSUenh025 +	I TSI	Uenh006				1							1				-		5	i	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 TSI	Uenh025		+		+		+				+			6			8			
4 BGT23b - <td>3 TSI</td> <td>Uenh026</td> <td></td> <td>+</td> <td></td> <td>+</td> <td></td> <td>+</td> <td></td> <td>+</td> <td></td> <td>• •</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>+</td> <td>ł</td> <td></td>	3 TSI	Uenh026		+		+		+		+		• •							+	ł	
5 NH011b - + <td>4 BG</td> <td>T23b</td> <td></td> <td>•</td> <td></td> <td>. ,</td> <td></td> <td></td> <td></td> <td>- ,</td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td>'</td> <td></td>	4 BG	T23b		•		. ,				- ,					•					'	
6 TSUenh016 +	5 NH	011b		,		,		+		+					• •		•				
7 TSUenh044	6 TSU	Uenh016		+		+		+		• +		- +			ŀ						
8 TSUenh046	7 TSU	Uenh044				1											• +				
9 NH030a + + +	8 TSL	Uenh046				'									+						
10 NH036b - + + + +	HN 6	030a				'		+		+		+								'	
11 TSUenh029 + +	HN 01	036b		,		+		+		+			1							•	
	II TSU	Jenh029				•				+		+								'	

Table 5 Amplific

204

Likewise, 94 primer pairs were tested on four accessions of *Pyrus* to evaluate the transferability of the markers, and 40 of 72 functional SSRs produced polymorphic amplicons (YAO *et al.*, 2010). All of the above interpretated results indicated that pear has close synteny with apple. Similarly, 30 SSRs from apple were used to assay the genetic relationships in loquat, 13 of which amplified polymorphic products and distinguished 34 of the 40 loquat accessions (SORIANO *et al.*, 2005) and also 39 identified SSRs from apple that could be transferred to loquat (HE *et al.*, 2011).

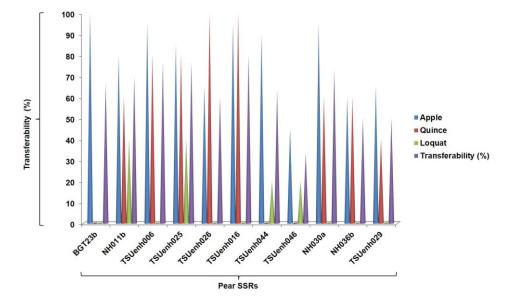


Fig 4 Transferability of pear SSRs to other temperate pome fruit crops

CONCLUSION

Results revealed a relatively high level of transferability of apple SSR to quince genotypes and pear SSR to apple genotypes, which means an increased number of SSR markers are available for temperate pome fruit crops, which is particularly of value for those species with little genomic information. Most of the apple and pear SSRs presented diversity when assessed in other temperate pome fruit crops, implying that they will be significant for genetic research. Besides this, when mapped, these markers can be used for conducting macro-synteny studies among temperate pome fruit crops for better understanding of genome organization and evolutionary relationships in this important fruit family.

ACKNOWLEDGEMENTS

Authors are thankful to Department of Science and Technology, Ministry of Science & Technology, Govt. of India, New Delhi, INDIA for providing funds for carrying out molecular

characterization work and the National Bureau of Plant Genetic Resources, New Delhi (Regional Station, Phagli, Shimla, HP) for providing germplasm used in the present study.

Received, August18th, 2019 Accepted December 22nd, 2020

Accepted December 22, 2

REFERENCES

- DOYLE, J.J., J.L., DOYLE (1990): Isolation of plant DNA from fresh tissues. Focus, 12: 13-15.
- FAN, L., M.Y., ZHANG, Q.Z., LIU, L.T., LI, Y., SONG, L.F., WANG, S.L., ZHANG, J., WU (2013): Transferability of newly developed pear SSR markers to other Rosaceae species. Plant Mol. Biol. Rep., 31: 1271-1282.
- GASIC, K., Y., HAN, S., KERTBUNDIT, V., SHULAEV, A.F., IEZZONI, E.W., STOVER, R.L., BELL, M.E., WISNIEWSKI, S.S., KORBAN (2009): Characteristics and transferability of new apple EST-derived SSRs to other Rosaceae species. Mol. Breeding, 23: 397-411.
- GIANFRANCESCHI, L., N., SEGLIAS, R., TARCHINI, M., KOMJANC, C., GESSLER (1998): Simple sequence repeats for the genetic analysis of apple. TAG, 96: 1069-1076.
- GISBERT, A.D., J., MARTÍNEZ-CALVO, G., LLACER, M.L., BADENES, C., ROMERO (2009): Development of two loquat [*Eriobotrya japonica* (Thunb.) Lindl] linkage maps based on AFLPs and SSR markers from different Rosaceae species. Mol. Breeding, 23: 523-538.
- GUTIERREZ, M.V., M.C., VAZPATTO, T., HUGUET, J.I., CUBERO, M.T., MORENO, A.M., TORRES (2005): Cross- species amplification of *Medicagotruncatula* microsatellites across three major pulse crops. TAG, 110: 1210-1217.
- HE, Q., X., LI, G., LIANG, K., JI, Q., GUO, W., YUAN, G., ZHOU, K., CHEN, W.E., WEG, Z., GAO (2011): Genetic diversity and identity of Chinese loquat cultivars/accessions (*Eriobotrya japonica*) using apple SSR markers. Plant Mol. Biol. Rep., 29: 197-208.
- JANICK, J., J.N., CUMMINS, S.K., BROWN, M., HEMMAT (1996): Apples. In: Fruit Breeding: Tree and Tropical Fruits, (Eds.): Janick, J, Moore JN. John Wiley and Sons, New York, PP. 1-77.
- KALIA, R.K., M.K., RAI, S., KALIA, R., SINGH, A.K., DHAWAN (2011): Microsatellites markers: an overview of the recent progress in plants. Euphytica, 177: 309-334.
- KULEUNG, C., P.S., BAENZIGER, I., DWEIKAT (2004): Transferability of SSR markers among wheat, rye, and triticale. TAG, 108: 1147-1150.
- LIEBHARD, R., L., GIANFRANCESCHI, B., KOLLER, C.D., RYDER, R., TARCHINI, E., VAN DE WEG, C., GESSLER (2002): Development and characterization of 140 new microsatellites in apple (*Malus × domestica* Borkh.). Mol. Breeding, *10*: 217-241.
- MNEJJA, M., J., GARCIA-MAS, J.M., AUDERGON, P., ARUS (2010): Prunus microsatellite marker transferability across rosaceous crops. Tree Genet. Genome, 6: 689-700.
- NISHITANI, C., S., TERAKAMI, Y., SAWAMURA, *et al.*, (2009): Development of novel EST-SSR markers derived from Japanese pear (*Pyrus pyrifolia*). Breeding Sci., 59(4): 391-400.
- PIERATONI, L., K.H., CHO, I.S., SHIN, R., CHIODINI, S., TARTARINI, L., DONDINI, S.J., KANG, S., SANSAVINI (2004): Characterization and transferability of apple SSRs to two European pear F1 populations. TAG, 109: 1519-1524.
- POWELL, W., G.C., MACHRAY, J., PROVAN (1996): Polymorphism revealed by simple sequence repeats. Trends Plant Sci., 1: 215-222.
- SHARMA, H., P., SHARMA, R., SHARMA (2016): Evaluation of genetic relatedness among temperate pome fruit crops of family Rosaceae using arbitrary oligonucleotide markers. Proc. Natl. Acad. Sci. India Sect. B: Biol. Sci.,

- SORIANO, J.M., C., ROMERO, S., VILANOVA, G., LLACER, M.L., BADENES (2005): Genetic diversity of loquat germplasm (*Eriobotrya japonica* (Thunb) Lindl.) assessed by SSR markers. Genome, 48: 108-114.
- VARSHNEY, R.K., A., GRANER, M.E., SORRELLS (2005): Genic microsatellite markers in plants: features and applications. Trends Biotechnol., 23: 48-55.
- WU, J., Z., WANG, Z., SHI, S., ZHANG, R., MING, S., ZHU, M.A., KHAN (2013): The genome of pear (*Pyru sbretschneideri* Rehd.). Genome Res., 23: 396-408.
- YAMAMOTO, T., T., KIMURA, Y., SAWAMURA, K., KOTOBUKI, Y., BAN, T., HAYASHI, N., MATSUTA (2001): SSRs isolated from apple can identify polymorphism and genetic diversity in pear. TAG, *102*: 865-870.
- YAMAMOTO, T., T., KIMURA, Y., SAWAMURA, T., MANABE, K., KOTOBUKI, T., HAYASHI, Y., BAN, N., MATSUTA (2002): Simple sequence repeats for genetic analysis in pear. Euphytica, *124*: 129-137.
- YAO, L., X., ZHENG, D., CAI, Y., GAO, K., WANG, Y., CAO, Y., TENG (2010): Exploitation of Malus EST-SSRs and the utility in evaluation of genetic diversity in *Malus* and *Pyrus*. Genet. Resour. Crop Evol., *57*: 841-851.
- YU, F., B.H., WANG, S.P., FENG, J.Y., WANG, W.G., LI, Y.T., WU (2011): Development, characterization, and crossspecies/genera transferability of SSR markers for rubber tree (*Hevea brasiliensis*). Plant Cell Rep., 30: 335-344.

PRENOSIVOST SSR-øva JABUKE I KRUŠKE NA OSTALE VOĆNE VRSTE U PORODICI ROSACEAE

Himani SHARMA, Parul SHARMA and Rajnish SHARMA*

Departman za biotehnologiju, Dr YS Parmar Univerzitet za hortikulturu i šumarstvo, Nauni, Solan, Indija

Izvod

Opsežna upotreba SSR-ova olakšava se ako bi se lokusi mogli prenositi između vrsta, čak i u blisko povezanim rodovima, kako bi se prevazišli visoki troškovi i napori koji su uključeni u njihov razvoj kao glavna ograničenja. U ovoj studiji, genomski mikrosatelitni parovi prajmera jabuke i kruške korišćeni su za pojačavanje SSR lokusa u genotipovima jabuka, krušaka, dunja i japanske mušmule. Već prijavljeni SSR-ovi su izabrani na osnovu njihovog polimorfnog istraživanja za uspešnu amplifikaciju sa najmanje jednim proizvodom lančane reakcije polimeraze (PCR) približne veličine koja se očekuje za homologni lokus prikazan među genotipovima jabuka i krušaka za dalje istraživanje prenosivosti na druge vrste voća. Najveća prenosivost SSR-ova jabuka i krušaka, 61,53% i 73,33%, primećena je kod usko povezanih genotipova dunja i jabuke. To je ukazalo da su mesta vezivanja prajmera između ova dva blisko povezana roda, Malus i Pyrus, prilično dobro očuvana. Utvrđeno je da je maksimalna stopa prenosivosti 93,33% i 80,00% za sve ispitivane genotipove za prajmere CH05D11 i TSUenh016 u jabuci, odnosno kruški. Prenosivost markera se zasniva na genomskoj sličnosti i može odražavati odnos kolinearnosti genoma, pa čak i evoluciju između vrsta. Ovaj visok nivo prenosivosti SSR-ova jabuke i kruške na druge vrste voćaka ukazao je na njihovu mogućnost primene na buduće molekularne skrininge, izgradnju mapa i uporedne genomske studije, itd.

> Primljeno 12. VIII.2019. Odobreno 22. XII. 2020.